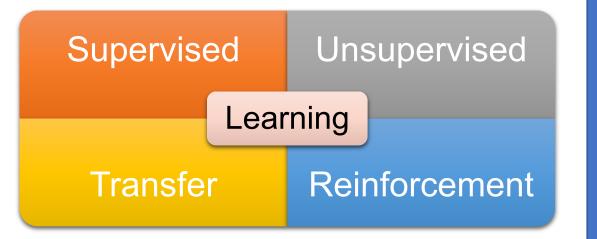
SLAQ: Quality-Driven Scheduling for Distributed Machine Learning

Haoyu Zhang*, Logan Stafman*, Andrew Or, Michael J. Freedman

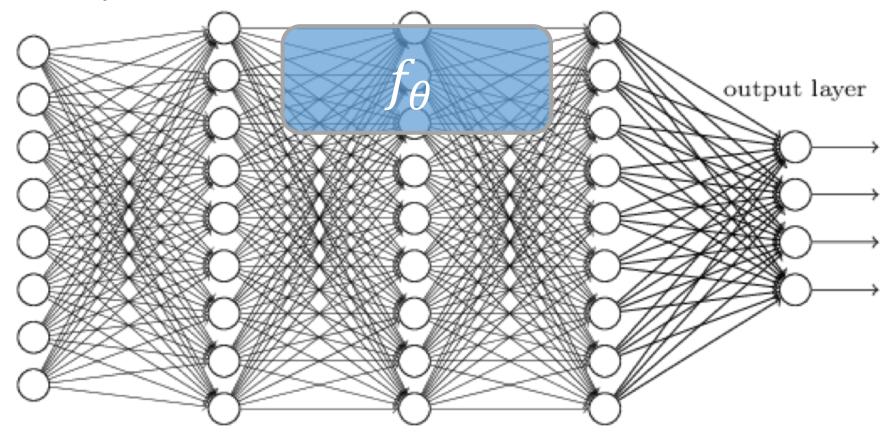
"Al is the new electricity."

- Machine translation
- Recommendation system
- Autonomous driving
- Object detection and recognition



ML algorithms are *approximate*

• ML model: a parametric transformation

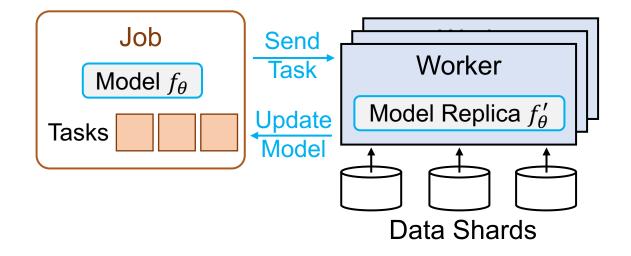


ML algorithms are *approximate*

• ML model: a parametric transformation

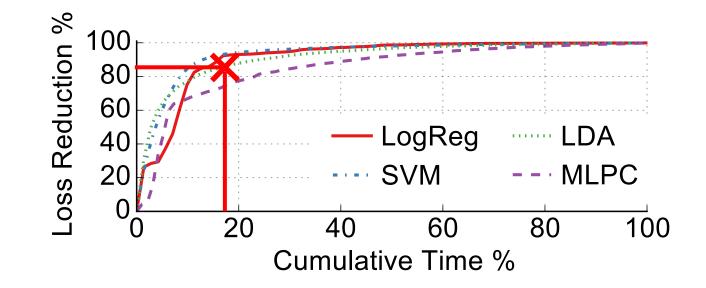
- maps input variables *X* to output variables *Y*
- typically contains a set of parameters θ
- Quality: how well model maps input to the correct output
- Loss function: discrepancy of model output and ground truth

Training ML models: an *iterative* process



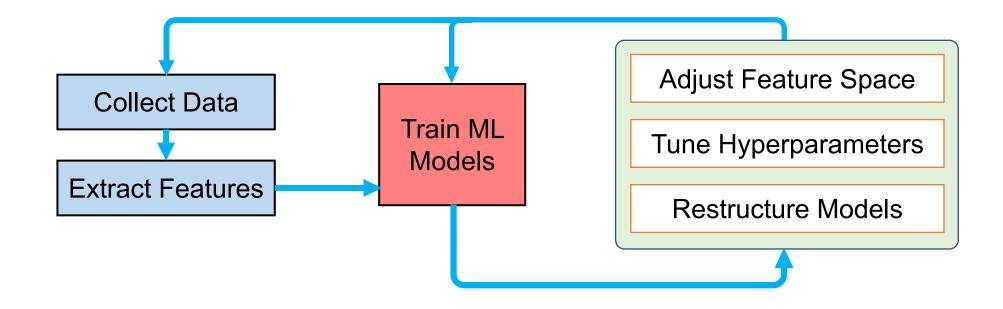
- Training algorithms iteratively minimize a loss function
 - E.g., stochastic gradient descent (SGD), L-BFGS

Training ML models: an *iterative* process



- Quality improvement is subject to diminishing returns
 - More than 80% of work done in 20% of time

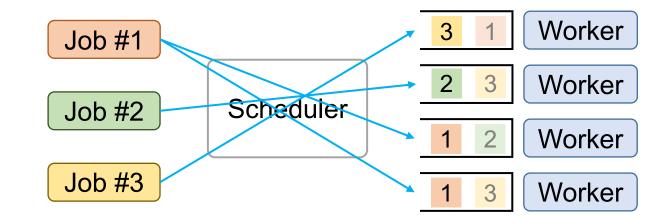
Exploratory ML training: not a one-time effort



- Train model multiple times for exploratory purposes
- Provide early feedback, direct model search for high quality models

How to schedule multiple training jobs on shared cluster?

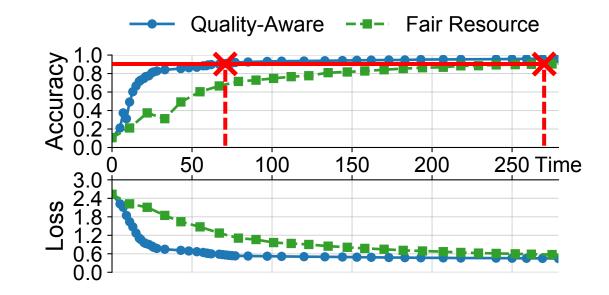
- Key features of ML jobs
 - Approximate
 - Diminishing returns
 - Exploratory process



- Problem with resource fairness scheduling
 - Jobs in early stage: could benefit a lot from additional resources
 - Jobs almost converged: make only marginal improvement

SLAQ: quality-aware scheduling

 Intuition: in the context of approximate ML training, more resources should be allocated to jobs that have the most potential for quality improvement



Solution Overview

Normalize quality metrics

Predict quality improvement

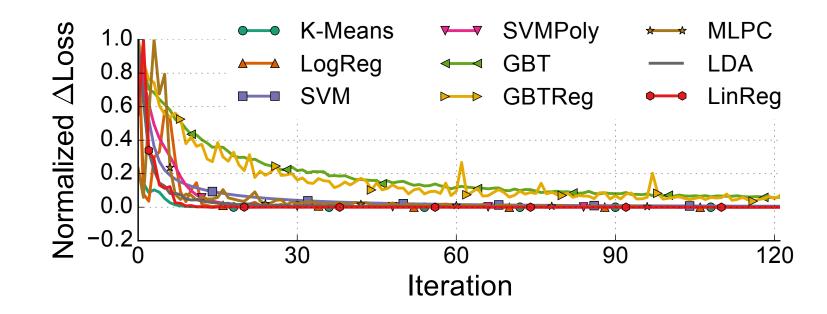
Quality-driven scheduling

Normalizing quality metrics

	Applicable to All Algorithms?	Comparable Magnitudes?	Known Range?	Predictable?
Accuracy / F1 Score / Area Under Curve / Confusion Matrix / etc.	×	√	•	X
Loss	√	X	X	✓
Normalized Loss	√	√	X	√
ΔLoss	√	X	√	√
Normalized ∆Loss				

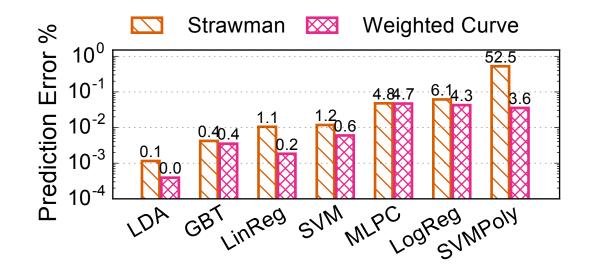
Normalizing quality metrics

- Normalize change of loss values w.r.t. largest change so far
 - Currently does not support some non-convex optimization algorithms



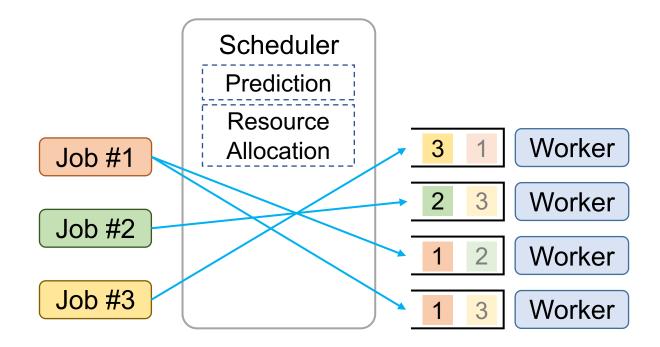
Training iterations: loss prediction

- Previous work: offline profiling / analysis [Ernest NSDI 16] [CherryPick NSDI 17]
 - Overhead for frequent offline analysis is huge
- Strawman: use last $\Delta Loss$ as prediction for future $\Delta Loss$
- SLAQ: online prediction using weighted curve fitting



Scheduling approximate ML training jobs

- Predict how much quality can be improved when assign X workers to jobs
- Reassign workers to maximize quality improvement



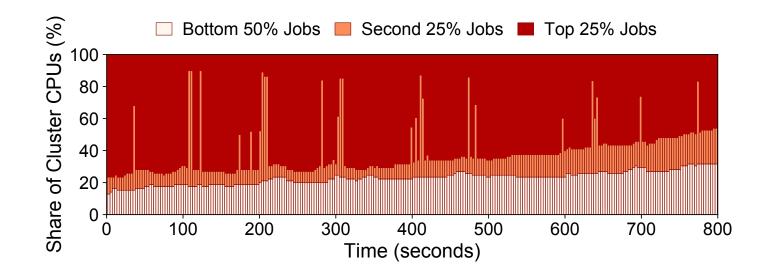
Experiment setup

- Representative mix of training jobs with Spark MLIIB
- Compare against a work-conserving fair scheduler

Algorithm	Acronym	Туре	Optimization Algorithm	Dataset
K-Means	K-Means	Clustering	Lloyd Algorithm	Synthetic
Logistic Regression	LogReg	Classification	Gradient Descent	Epsilon [33]
Support Vector Machine	SVM	Classification	Gradient Descent	Epsilon
SVM (polynomial kernel)	SVMPoly	Classification	Gradient Descent	MNIST [34]
Gradient Boosted Tree	GBT	Classification	Gradient Boosting	Epsilon
GBT Regression	GBTReg	Regression	Gradient Boosting	YearPredictionMSD [35]
Multi-Layer Perceptron Classifier	MLPC	Classification	L-BFGS	Epsilon
Latent Dirichlet Allocation	LDA	Clustering	EM / Online Algorithm	Associated Press Corpus [36]
Linear Regression	LinReg	Regression	L-BFGS	YearPredictionMSD

Evaluation: resource allocation across jobs

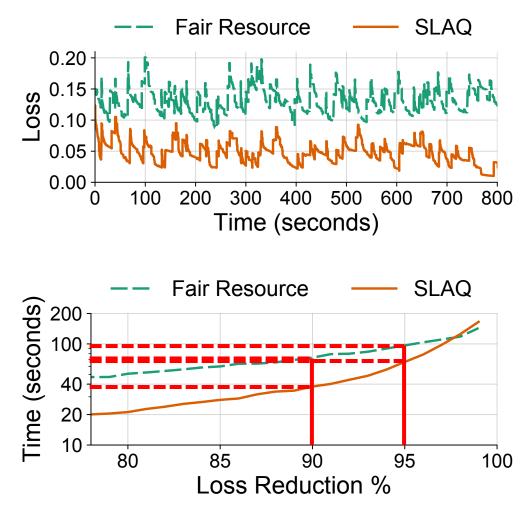
- 160 training jobs submitted to cluster following Poisson distribution
 - 25% jobs with high loss values
 - 25% jobs with medium loss values
 - 50% jobs with low loss values (almost converged)



Evaluation: cluster-wide quality and time

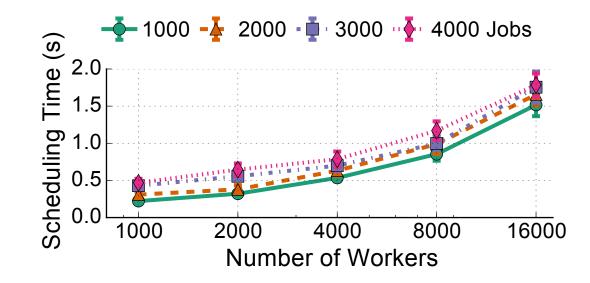
• SLAQ's average loss is 73% lower than that of the fair scheduler

 SLAQ reduces time to reach 90% (95%) loss reduction by 45% (30%)



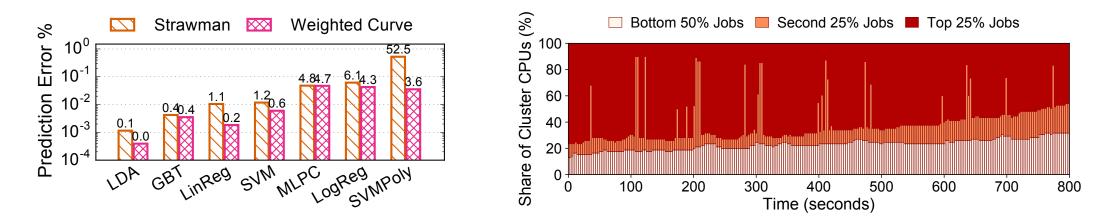
SLAQ Evaluation: Scalability

- Frequently reschedule and reconfigure in reaction to changes of progress
- Even with thousands of concurrent jobs, SLAQ makes rescheduling decisions in just a few seconds



Conclusion

- SLAQ leverages the approximate and iterative ML training process
- Highly tailored prediction for iterative job quality
- Allocate resources to maximize quality improvement



• SLAQ achieves better overall quality and end-to-end training time

Training iterations: runtime prediction

- Iteration runtime: $c \cdot S/N$
 - Model complexity c, data size S, number of workers N
 - Model update (i.e., size of $\Delta \theta$) is comparably much smaller

